5.1.b 還元気化原子吸光法(液状の汚泥肥料)

(1) 概要

この試験法は液状の汚泥肥料に適用する。この試験法の分類は Type D であり、その記号は 5.1.b-2017 又は Hg.b-1 とする。

分析試料を硝酸ー過酸化水素で前処理した後、溶液中の水銀(II)を塩化すず(II)で還元する。この溶液に通気し、発生する水銀蒸気による原子吸光を波長 253.7 nm で測定し、分析試料中の水銀(Hg)を求める。試験 法の性能は**備考3**に示す。

- (2) 試薬等 試薬及び水は、次による。
- a) 水: JIS K 0557 に規定する A3 の水。
- b) 硝酸: 有害金属測定用、精密分析用又は同等の品質の試薬。
- c) 過酸化水素: JIS K 8230 に規定する特級又は同等の品質の試薬。
- d) 硫酸: 有害金属測定用、精密分析用又は同等の品質の試薬。
- e) **塩化すず(II)溶液**: JIS K 8136 に規定する塩化すず(II) 二水和物⁽¹⁾10 g に硫酸(1+20)60 mL を加え、かき混ぜながら加熱して溶かす。冷却した後、水を加えて 100 mL とする。
- f) L-システイン溶液: 純度 98.0 %(質量分率)以上の L-システイン(HSCH₂CH(NH₂)COOH)10 mg に水 100 mL 及び硝酸 2 mL を加えて溶かし、更に水を加えて 1000 mL とする。 冷蔵庫で保存し、調製後 6 ヶ月 間以上経過したものは使用しない。
- g) 水銀標準液(Hg 100 μg/mL): 国家計量標準にトレーサブルな水銀標準液(Hg 100 μg/mL)。
- h) **水銀標準液(Hg 10 μg/mL)**⁽²⁾⁽³⁾: 水銀標準液(Hg 100 μg/mL) 10 mL を 100 mL 全量フラスコにとり、標線まで L-システイン溶液を加える。
- i) **水銀標準液(Hg 0.1 \mug/mL)** $^{(2)}$ (4): 水銀標準液(Hg 10 μ g/mL)の一定量を L-システイン溶液で希釈し、水銀標準液(Hg 0.1 μ g/mL)を調製する。
- 注(1) 水銀分析用、有害金属測定用等水銀含有量の少ない試薬を用いる。
 - (2) 調製例であり、必要に応じた量を調製する。
 - (3) 冷蔵庫で保存し、調製後4ヶ月間以上経過したものは使用しない。
 - (4) 冷蔵庫で保存し、調製後1ヶ月間以上経過したものは使用しない。
- **備考 1.** (2)の水銀標準液に換えて、国家計量標準にトレーサブルな水銀標準液(Hg 1000 μg/mL 又は 10 000 μg/mL)を用いて検量線用水銀標準液を調製することもできる。
- (3) 器具及び装置 器具及び装置は、次のとおりとする。
- a) 水銀専用原子吸光分析装置: JIS K 0121 に規定する還元気化方式の水銀専用原子吸光分析装置。
- 1) 光源部: 低圧水銀ランプ
- b) **圧力容器分解装置**: 分解容器に酸等を入れて加熱することにより容器内部を加圧状態にし、加熱、加圧 及び酸の相互作用によって試料の分解を行うことができ次の要件を満たすもの。
 - 1) **分解装置本体**: マイクロ波を用いて加熱する方法では、工業用周波数設備として許可されている周波数を用いて高周波を発生させることができる装置であること。装置内のセンサーで分解容器内の圧力や温度等がモニターできることが望ましい。装置内は耐酸加工され、高温に耐えられる耐久性をもち、高い安全

性を有するもの。

- 2) **排気システム**: 耐酸仕様の排気ファンを持ち、一定の風量で装置内を空冷し、作動温度を一定以下に保つ機能を有するもの。
- 3) **分解容器**: 微小粒子の分解に必要な耐熱性、耐圧性、耐久性を有し、内部汚染しにくいもの。耐圧限界を超えた場合、過熱防止弁が作動し、ガスの放出により内部圧力を低下させ、酸の突沸を防ぐなどの安全機能を有するもの。
- c) **遠心分離機**:約 1700×g で遠心分離可能なもの。

(4) 試験操作

- (4.1) 抽出 抽出は、次のとおり行う。
- a) 分析試料 20 g⁽⁵⁾を 10 mg の桁まではかりとり、分解容器に入れる。
- b) 硝酸 2.5 mL、過酸化水素 2 mL を徐々に加える。
- c) 分解容器を分解装置本体に入れ、マイクロ波を用いて加熱する(6)。
- d) 240 °C±5 °C で 10 分間以上強熱(6)して分解する(7)。
- e) 放冷後、水で 50 mL 全量フラスコ⁽⁸⁾に移し入れる。
- f) 標線まで水を加え、50 mL 共栓遠心沈殿管⁽⁸⁾に 50 mL 程度とる。
- g) 遠心力約 1700×g で約 5 分間遠心分離し⁽⁹⁾、上澄み液を試料溶液とする。
- h) 空試験として、別の分解容器を用いて b)~g)の操作を実施し、空試験溶液を調製する。
- 注(5) 水分含有量から換算して分析試料採取量 20 g 中の固形分含有量は 0.5 g 程度を上限とする。固形分含有量が上限を超えるおそれのある場合は、分析試料採取量を適宜減らす。
 - (6) マイクロ波分解装置条件例: 0 min (室温)→10min (240 °C)→20 min (240 °C)→40 min (室温)、初期出力 1400 W
 - (7) 分解液が着色するなど有機物の残存が認められる場合は(4.1)b) \sim c) の操作を再び行う。
 - (8) ポリプロピレン製等の容器で測定に影響しないもの。
 - (9) 半径 16.5 cm 及び回転数 3000 rpm で遠心力 1700×g 程度となる。
- (4.2) **測定** 測定は、JIS K 0121 に規定する冷蒸気方式原子吸光法により行う。具体的な測定操作は、使用する原子吸光分析装置の操作方法に従う。水銀専用原子吸光分析装置を用いた測定の一例を次に示す。
- a) **原子吸光分析装置の測定条件** 原子吸光分析装置の測定条件は、以下を参考にして設定する。 分析線波長: 253.7 nm

b) 検量線の作成

- 1) 水銀標準液 (Hg $0.1~\mu g/mL$) $0.4~mL\sim 10~mL$ を 100~mL 全量フラスコに段階的にとり、標線まで水を加える。この液 5~mL をそれぞれの還元容器に入れ、検量線用水銀標準液とする。
- 2) 別の還元容器に水 5 mL を入れ、検量線用空試験液とする。
- 3) 還元容器を水銀専用原子吸光分析装置に連結し、硫酸(1+1)及び塩化すず(II)溶液を導入し、空気を循環させる。
- 4) 波長 253.7 nm の指示値を読み取る。
- 5) 検量線用水銀標準液及び検量線用空試験液の水銀量(µg)と指示値との検量線を作成する。

c) 試料の測定

- 1) 試料溶液 5 mL をそれぞれの還元容器に入れ、b)3)~4)と同様に操作して指示値を読み取る。
- 2) 空試験溶液 5 mL を還元容器に入れ、 \mathbf{b})3)~4)と同様に操作して指示値を読み取り、試料溶液について得た指示値を補正する。
- 3) 検量線から水銀量(µg)を求め、分析試料中の水銀(Hg)を算出する。

備考 2. c) 2) の補正方法に換え、空試験における水銀量を求めて分析試料中の水銀(Hg) を補正してもよい。 **備考 3.** 真度評価のため、液状の工業汚泥肥料 2 点及び汚泥発酵肥料 6 点を用いて 3 点併行で添加回収 試験を実施した結果、現物中の水銀(Hg) として 0.2 mg/kg~0.4 mg/kg、0.01 mg/kg~0.09 mg/kg 及び 0.7 μg/kg~7 μg/kg の濃度レベルでの平均回収率は 100.0 %~109.1 %、99.0 %~114.6 %及び 100.4 %~ 113.4 %であった。

精度の評価のため、2種類の液状汚泥肥料を用いた日を変えての分析結果について、一元配置分散分析を用いて解析し、併行精度及び中間精度を算出した結果を表1に示す。

なお、この試験法の定量下限は現物あたり 0.2 μg/kg 程度と推定された。

表1 水銀の日を変えた試験成績の解析結果(液状肥料)

			併行精度		中間精度	
試料名	日数1)	平均值2)	3) S _r	$RSD_{\rm r}^{(4)}$	S _{I(T)} ⁵⁾	$RSD_{I(T)}^{6)}$
	T	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(%)
汚泥発酵肥料1	5	0.0577	0.0009	1.5	0.0014	2.5
汚泥発酵肥料2	5	0.0142	0.0002	1.7	0.0003	2.2

- 1) 2点併行分析を実施した日数
- 2) 平均値(日数(T)×併行数(2))
- 3) 併行標準偏差

- 4) 併行相対標準偏差
- 5) 中間標準偏差
- 6) 中間相対標準偏差

参考文献

1) 八木寿治: ICP 質量分析計(ICP-MS)及び還元気化原子吸光光度計(CV-AAS)による液状汚泥肥料中の重金属等の測定,肥料研究報告, 8, 26~37 (2015)

(5) 水銀試験法フローシート 液状汚泥肥料中の水銀試験法のフローシートを次に示す。

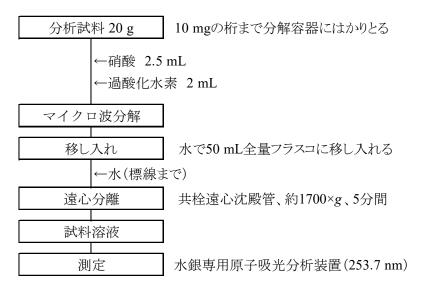


図 液状汚泥肥料中の水銀試験法フローシート